MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation

05/30/2022
by   Aitor Alvarez-Gila, et al.
0

We present MVMO (Multi-View, Multi-Object dataset): a synthetic dataset of 116,000 scenes containing randomly placed objects of 10 distinct classes and captured from 25 camera locations in the upper hemisphere. MVMO comprises photorealistic, path-traced image renders, together with semantic segmentation ground truth for every view. Unlike existing multi-view datasets, MVMO features wide baselines between cameras and high density of objects, which lead to large disparities, heavy occlusions and view-dependent object appearance. Single view semantic segmentation is hindered by self and inter-object occlusions that could benefit from additional viewpoints. Therefore, we expect that MVMO will propel research in multi-view semantic segmentation and cross-view semantic transfer. We also provide baselines that show that new research is needed in such fields to exploit the complementary information of multi-view setups.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset