Negation, Coordination, and Quantifiers in Contextualized Language Models

09/16/2022
by   Aikaterini-Lida Kalouli, et al.
2

With the success of contextualized language models, much research explores what these models really learn and in which cases they still fail. Most of this work focuses on specific NLP tasks and on the learning outcome. Little research has attempted to decouple the models' weaknesses from specific tasks and focus on the embeddings per se and their mode of learning. In this paper, we take up this research opportunity: based on theoretical linguistic insights, we explore whether the semantic constraints of function words are learned and how the surrounding context impacts their embeddings. We create suitable datasets, provide new insights into the inner workings of LMs vis-a-vis function words and implement an assisting visual web interface for qualitative analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset