Negative Log Likelihood Ratio Loss for Deep Neural Network Classification

04/27/2018
by   Donglai Zhu, et al.
0

In deep neural network, the cross-entropy loss function is commonly used for classification. Minimizing cross-entropy is equivalent to maximizing likelihood under assumptions of uniform feature and class distributions. It belongs to generative training criteria which does not directly discriminate correct class from competing classes. We propose a discriminative loss function with negative log likelihood ratio between correct and competing classes. It significantly outperforms the cross-entropy loss on the CIFAR-10 image classification task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset