Negatively Correlated Search as a Parallel Exploration Search Strategy
Parallel exploration is a key to a successful search. The recently proposed Negatively Correlated Search (NCS) achieved this ability by constructing a set of negatively correlated search processes and has been applied to many real-world problems. In NCS, the key technique is to explicitly model and maximize the diversity among search processes in parallel. However, the original diversity model was mostly devised by intuition, which introduced several drawbacks to NCS. In this paper, a mathematically principled diversity model is proposed to solve the existing drawbacks of NCS, resulting a new NCS framework. A new instantiation of NCS is also derived and its effectiveness is verified on a set of multi-modal continuous optimization problems.
READ FULL TEXT