Neighborhood Matters: Influence Maximization in Social Networks with Limited Access

10/03/2020
by   Chen Feng, et al.
0

Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called seeding). In many applications, due to user's privacy concern, overwhelming network scale etc., it is hard to target any user in the network as one wishes. Instead, only a small subset of users is initially accessible. Such access limitation would significantly impair the influence spread, since IM often relies on seeding high degree users, which are particularly rare in such a small subset due to the power-law structure of social networks. In this paper, we attempt to solve the limited IM in real-world scenarios by the adaptive approach with seeding and diffusion uncertainty considered. Specifically, we consider fine-grained discounts and assume users accept the discount probabilistically. The diffusion process is depicted by the independent cascade model. To overcome the access limitation, we prove the set-wise friendship paradox (FP) phenomenon that neighbors have higher degree in expectation, and propose a two-stage seeding model with the FP embedded, where neighbors are seeded. On this basis, for comparison we formulate the non-adaptive case and adaptive case, both proven to be NP-hard. In the non-adaptive case, discounts are allocated to users all at once. We show the monotonicity of influence spread w.r.t. discount allocation and design a two-stage coordinate descent framework to decide the discount allocation. In the adaptive case, users are sequentially seeded based on observations of existing seeding and diffusion results. We prove the adaptive submodularity and submodularity of the influence spread function in two stages. Then, a series of adaptive greedy algorithms are proposed with constant approximation ratio.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset