NETR-Tree: An Eifficient Framework for Social-Based Time-Aware Spatial Keyword Query

08/26/2019
by   Zhixian Yang, et al.
0

The prevalence of social media and the development of geo-positioning technology stimulate the growth of location-based social networks (LBSNs). With a large volume of data containing locations, texts, check-in information, and social relationships, spatial keyword queries in LBSNs have become increasingly complex. In this paper, we identify and solve the Social-based Time-aware Spatial Keyword Query (STSKQ) that returns the top-k objects by taking geo-spatial score, keywords similarity, visiting time score, and social relationship effect into consideration. To tackle STSKQ, we propose a two-layer hybrid index structure called Network Embedding Time-aware R-tree (NETR-tree). In user layer, we exploit network embedding strategy to measure relationship effect in users' relationship network. In location layer, we build a Time-aware R-tree (TR-tree), which considers spatial objects' spatio-temporal check-in information. On the basis of NETR-tree, a corresponding query processing algorithm is presented. Finally, extensive experiments on real-data collected from two different real-life LBSNs demonstrate the effectiveness and efficiency of the proposed methods, compared with existing state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset