Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration

09/23/2022
by   Yung-Chen Tang, et al.
0

Neural network calibration is an essential task in deep learning to ensure consistency between the confidence of model prediction and the true correctness likelihood. In this paper, we propose a new post-processing calibration method called Neural Clamping, which employs a simple joint input-output transformation on a pre-trained classifier via a learnable universal input perturbation and an output temperature scaling parameter. Moreover, we provide theoretical explanations on why Neural Clamping is provably better than temperature scaling. Evaluated on CIFAR-100 and ImageNet image recognition datasets and a variety of deep neural network models, our empirical results show that Neural Clamping significantly outperforms state-of-the-art post-processing calibration methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset