Neural Lander: Stable Drone Landing Control using Learned Dynamics

11/19/2018
by   Guanya Shi, et al.
0

Precise trajectory control near ground is difficult for multi-rotor drones, due to the complex ground effects caused by interactions between multi-rotor airflow and the environment. Conventional control methods often fail to properly account for these complex effects and fall short in accomplishing smooth landing. In this paper, we present a novel deep-learning-based robust nonlinear controller (Neural-Lander) that improves control performance of a quadrotor during landing. Our approach blends together a nominal dynamics model coupled with a Deep Neural Network (DNN) that learns the high-order interactions. We employ a novel application of spectral normalization to constrain the DNN to have bounded Lipschitz behavior. Leveraging this Lipschitz property, we design a nonlinear feedback linearization controller using the learned model and prove system stability with disturbance rejection. To the best of our knowledge, this is the first DNN-based nonlinear feedback controller with stability guarantees that can utilize arbitrarily large neural nets. Experimental results demonstrate that the proposed controller significantly outperforms a baseline linear proportional-derivative (PD) controller in both 1D and 3D landing cases. In particular, we show that compared to the PD controller, Neural-Lander can decrease error in z direction from 0.13m to zero, and mitigate average x and y drifts by 90 respectively, in 1D landing. Meanwhile, Neural-Lander can decrease z error from 0.12m to zero, in 3D landing. We also empirically show that the DNN generalizes well to new test inputs outside the training domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset