Neural Neighbor Style Transfer

03/24/2022
by   Nicholas Kolkin, et al.
0

We propose Neural Neighbor Style Transfer (NNST), a pipeline that offers state-of-the-art quality, generalization, and competitive efficiency for artistic style transfer. Our approach is based on explicitly replacing neural features extracted from the content input (to be stylized) with those from a style exemplar, then synthesizing the final output based on these rearranged features. While the spirit of our approach is similar to prior work, we show that our design decisions dramatically improve the final visual quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset