Neural Relation Prediction for Simple Question Answering over Knowledge Graph
Relation extraction from simple questions aims to capture the relation of a factoid question with one underlying relation from a set of predefined ones ina knowledge base. Most recent methods take advantage of neural networks for matching a question with all relations in order to find the best relation that is expressed by that question. In this paper, we propose an instance-based method to find similar questions of a new question, in the sense of their relations, to predict its mentioned relation. The motivation roots in the fact that a relation can be expressed with different forms of question and these forms mostly share similar terms or concepts. Our experiments on the SimpleQuestions dataset show that the proposed model achieved better accuracy compared to the state-of-the-art relation extraction models.
READ FULL TEXT