NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering

06/13/2023
by   Shi Mao, et al.
0

Recent advances in neural implicit fields enables rapidly reconstructing 3D geometry from multi-view images. Beyond that, recovering physical properties such as material and illumination is essential for enabling more applications. This paper presents a new method that effectively learns relightable neural surface using pre-intergrated rendering, which simultaneously learns geometry, material and illumination within the neural implicit field. The key insight of our work is that these properties are closely related to each other, and optimizing them in a collaborative manner would lead to consistent improvements. Specifically, we propose NeuS-PIR, a method that factorizes the radiance field into a spatially varying material field and a differentiable environment cubemap, and jointly learns it with geometry represented by neural surface. Our experiments demonstrate that the proposed method outperforms the state-of-the-art method in both synthetic and real datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset