NICE: An Algorithm for Nearest Instance Counterfactual Explanations
In this paper we suggest NICE: a new algorithm to generate counterfactual explanations for heterogeneous tabular data. The design of our algorithm specifically takes into account algorithmic requirements that often emerge in real-life deployments: the ability to provide an explanation for all predictions, being efficient in run-time, and being able to handle any classification model (also non-differentiable ones). More specifically, our approach exploits information from a nearest instance tospeed up the search process. We propose four versions of NICE, where three of them optimize the explanations for one of the following properties: sparsity, proximity or plausibility. An extensive empirical comparison on 10 datasets shows that our algorithm performs better on all properties than the current state-of-the-art. These analyses show a trade-off between on the one hand plausiblity and on the other hand proximity or sparsity, with our different optimization methods offering the choice to select the preferred trade-off. An open-source implementation of NICE can be found at https://github.com/ADMAntwerp/NICE.
READ FULL TEXT