NILM as a regression versus classification problem: the importance of thresholding

10/28/2020
by   Daniel Precioso, et al.
0

Non-Intrusive Load Monitoring (NILM) aims to predict the status or consumption of domestic appliances in a household only by knowing the aggregated power load. NILM can be formulated as regression problem or most often as a classification problem. Most datasets gathered by smart meters allow to define naturally a regression problem, but the corresponding classification problem is a derived one, since it requires a conversion from the power signal to the status of each device by a thresholding method. We treat three different thresholding methods to perform this task, discussing their differences on various devices from the UK-DALE dataset. We analyze the performance of deep learning state-of-the-art architectures on both the regression and classification problems, introducing criteria to select the most convenient thresholding method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset