Noise Estimation for Generative Diffusion Models

04/06/2021
by   Robin San-Roman, et al.
0

Generative diffusion models have emerged as leading models in speech and image generation. However, in order to perform well with a small number of denoising steps, a costly tuning of the set of noise parameters is needed. In this work, we present a simple and versatile learning scheme that can step-by-step adjust those noise parameters, for any given number of steps, while the previous work needs to retune for each number separately. Furthermore, without modifying the weights of the diffusion model, we are able to significantly improve the synthesis results, for a small number of steps. Our approach comes at a negligible computation cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset