Non-Deterministic Face Mask Removal Based On 3D Priors

02/20/2022
by   Xiangnan Yin, et al.
0

This paper presents a novel image inpainting framework for face mask removal. Although current methods have demonstrated their impressive ability in recovering damaged face images, they suffer from two main problems: the dependence on manually labeled missing regions and the deterministic result corresponding to each input. The proposed approach tackles these problems by integrating a multi-task 3D face reconstruction module with a face inpainting module. Given a masked face image, the former predicts a 3DMM-based reconstructed face together with a binary occlusion map, providing dense geometrical and textural priors that greatly facilitate the inpainting task of the latter. By gradually controlling the 3D shape parameters, our method generates high-quality dynamic inpainting results with different expressions and mouth movements. Qualitative and quantitative experiments verify the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset