Non-Uniform k-Center and Greedy Clustering

11/11/2021
by   Tanmay Inamdar, et al.
0

In the Non-Uniform k-Center problem, a generalization of the famous k-center clustering problem, we want to cover the given set of points in a metric space by finding a placement of balls with specified radii. In t-NUkC Problem, we assume that the number of distinct radii is equal to t, and we are allowed to use k_i balls of radius r_i, for 1 ≤ i ≤ t. This problem was introduced by Chakrabarty et al. [ACM Trans. Alg. 16(4):46:1-46:19], who showed that a constant approximation for t-NUkC is not possible if t is unbounded. On the other hand, they gave a bicriteria approximation that violates the number of allowed balls as well as the given radii by a constant factor. They also conjectured that a constant approximation for t-NUkC should be possible if t is a fixed constant. Since then, there has been steady progress towards resolving this conjecture – currently, a constant approximation for 3-NUkC is known via the results of Chakrabarty and Negahbani [IPCO 2021], and Jia et al. [To appear in SOSA 2022]. We push the horizon by giving an O(1)-approximation for the Non-Uniform k-Center for 4 distinct types of radii. Our result is obtained via a novel combination of tools and techniques from the k-center literature, which also demonstrates that the different generalizations of k-center involving non-uniform radii, and multiple coverage constraints (i.e., colorful k-center), are closely interlinked with each other. We hope that our ideas will contribute towards a deeper understanding of the t-NUkC problem, eventually bringing us closer to the resolution of the CGK conjecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro