Nonlinear control of a swinging pendulum on a wheeled mobile robot with nonholonomic constraints

In this paper, we propose a nonlinear control strategy for swinging up a pendulum to its upright equilibrium position by shaping its swinging energy along with regulating the cart to a desired location. While the base of a usual cart-pole system is restricted to move in a straight line, the present system is allowed to move in the x-y plane with a nonholonomic consraint that its allowable velocity is only along its orientation. A simple time invariant control law has been presented and its effectiveness has been demonstrated using numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset