Nonmonotonic Logics and Semantics

02/15/2002
by   Daniel Lehmann, et al.
0

Tarski gave a general semantics for deductive reasoning: a formula a may be deduced from a set A of formulas iff a holds in all models in which each of the elements of A holds. A more liberal semantics has been considered: a formula a may be deduced from a set A of formulas iff a holds in all of the "preferred" models in which all the elements of A hold. Shoham proposed that the notion of "preferred" models be defined by a partial ordering on the models of the underlying language. A more general semantics is described in this paper, based on a set of natural properties of choice functions. This semantics is here shown to be equivalent to a semantics based on comparing the relative "importance" of sets of models, by what amounts to a qualitative probability measure. The consequence operations defined by the equivalent semantics are then characterized by a weakening of Tarski's properties in which the monotonicity requirement is replaced by three weaker conditions. Classical propositional connectives are characterized by natural introduction-elimination rules in a nonmonotonic setting. Even in the nonmonotonic setting, one obtains classical propositional logic, thus showing that monotonicity is not required to justify classical propositional connectives.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset