Novel Policy Seeking with Constrained Optimization

05/21/2020
by   Hao Sun, et al.
6

In this work, we address the problem of learning to seek novel policies in reinforcement learning tasks. Instead of following the multi-objective framework used in previous methods, we propose to rethink the problem under a novel perspective of constrained optimization. We first introduce a new metric to evaluate the difference between policies, and then design two practical novel policy seeking methods following the new perspective, namely the Constrained Task Novel Bisector (CTNB), and the Interior Policy Differentiation (IPD), corresponding to the feasible direction method and the interior point method commonly known in constrained optimization problems. Experimental comparisons on the MuJuCo control suite show our methods achieve substantial improvements over previous novelty-seeking methods in terms of both novelty and primal task performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset