Novelty Detection via Non-Adversarial Generative Network
One-class novelty detection is the process of determining if a query example differs from the training examples (the target class). Most of previous strategies attempt to learn the real characteristics of target sample by using generative adversarial networks (GANs) methods. However, the training process of GANs remains challenging, suffering from instability issues such as mode collapse and vanishing gradients. In this paper, by adopting non-adversarial generative networks, a novel decoder-encoder framework is proposed for novelty detection task, insteading of classical encoder-decoder style. Under the non-adversarial framework, both latent space and image reconstruction space are jointly optimized, leading to a more stable training process with super fast convergence and lower training losses. During inference, inspired by cycleGAN, we design a new testing scheme to conduct image reconstruction, which is the reverse way of training sequence. Experiments show that our model has the clear superiority over cutting-edge novelty detectors and achieves the state-of-the-art results on the datasets.
READ FULL TEXT