Numerical Simulations of Polymer Flooding Process in Porous Media on Distributed-memory Parallel Computers

07/13/2018
by   He Zhong, et al.
0

Polymer flooding is a mature enhanced oil recovery technique that has been successfully applied in many field projects. By injecting polymer into a reservoir, the viscosity of water is increased, and the efficiency of water flooding is improved. As a result, more oil can be recovered. This paper presents numerical simulations of a polymer flooding process using parallel computers, where the numerical modeling of polymer retention, inaccessible pore volumes, a permeability reduction and polymer absorption are considered. Darcy's law is employed to model the behavoir of a fluid in porous media, and the upstream finite difference (volume) method is applied to discretize the mass conservation equations. Numerical methods, including discretization schemes, linear solver methods, nonlinearization methods and parallel techniques are introduced. Numerical experiments show that, on one hand, computed results match those from the commercial simulator, Schlumberger-Eclipse, which is widely applied by the petroleum industry, and, on the other hand, our simulator has excellent scalability, which is demonstrated by field applications with up to 27 million grid blocks using up to 2048 CPU cores.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset