Object Detection, Tracking, and Motion Segmentation for Object-level Video Segmentation

08/10/2016
by   Benjamin Drayer, et al.
0

We present an approach for object segmentation in videos that combines frame-level object detection with concepts from object tracking and motion segmentation. The approach extracts temporally consistent object tubes based on an off-the-shelf detector. Besides the class label for each tube, this provides a location prior that is independent of motion. For the final video segmentation, we combine this information with motion cues. The method overcomes the typical problems of weakly supervised/unsupervised video segmentation, such as scenes with no motion, dominant camera motion, and objects that move as a unit. In contrast to most tracking methods, it provides an accurate, temporally consistent segmentation of each object. We report results on four video segmentation datasets: YouTube Objects, SegTrackv2, egoMotion, and FBMS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro