ObPose: Leveraging Canonical Pose for Object-Centric Scene Inference in 3D

06/07/2022
by   Yizhe Wu, et al.
7

We present ObPose, an unsupervised object-centric generative model that learns to segment 3D objects from RGB-D video in an unsupervised manner. Inspired by prior art in 2D representation learning, ObPose considers a factorised latent space, separately encoding object-wise location (where) and appearance (what) information. In particular, ObPose leverages an object's canonical pose, defined via a minimum volume principle, as a novel inductive bias for learning the where component. To achieve this, we propose an efficient, voxelised approximation approach to recover the object shape directly from a neural radiance field (NeRF). As a consequence, ObPose models scenes as compositions of NeRFs representing individual objects. When evaluated on the YCB dataset for unsupervised scene segmentation, ObPose outperforms the current state-of-the-art in 3D scene inference (ObSuRF) by a significant margin in terms of segmentation quality for both video inputs as well as for multi-view static scenes. In addition, the design choices made in the ObPose encoder are validated with relevant ablations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset