Offline Equilibrium Finding
Offline reinforcement learning (Offline RL) is an emerging field that has recently begun gaining attention across various application domains due to its ability to learn behavior from earlier collected datasets. Using logged data is imperative when further interaction with the environment is expensive (computationally or otherwise), unsafe, or entirely unfeasible. Offline RL proved very successful, paving a path to solving previously intractable real-world problems, and we aim to generalize this paradigm to a multi-agent or multiplayer-game setting. Very little research has been done in this area, as the progress is hindered by the lack of standardized datasets and meaningful benchmarks. In this work, we coin the term offline equilibrium finding (OEF) to describe this area and construct multiple datasets consisting of strategies collected across a wide range of games using several established methods. We also propose a benchmark method – an amalgamation of a behavior-cloning and a model-based algorithm. Our two model-based algorithms – OEF-PSRO and OEF-CFR – are adaptations of the widely-used equilibrium finding algorithms Deep CFR and PSRO in the context of offline learning. In the empirical part, we evaluate the performance of the benchmark algorithms on the constructed datasets. We hope that our efforts may help to accelerate research in large-scale equilibrium finding. Datasets and code are available at https://github.com/SecurityGames/oef.
READ FULL TEXT