OGGN: A Novel Generalized Oracle Guided Generative Architecture for Modelling Inverse Function of Artificial Neural Networks

04/08/2021
by   Mohammad Aaftab V, et al.
0

This paper presents a novel Generative Neural Network Architecture for modelling the inverse function of an Artificial Neural Network (ANN) either completely or partially. Modelling the complete inverse function of an ANN involves generating the values of all features that corresponds to a desired output. On the other hand, partially modelling the inverse function means generating the values of a subset of features and fixing the remaining feature values. The feature set generation is a critical step for artificial neural networks, useful in several practical applications in engineering and science. The proposed Oracle Guided Generative Neural Network, dubbed as OGGN, is flexible to handle a variety of feature generation problems. In general, an ANN is able to predict the target values based on given feature vectors. The OGGN architecture enables to generate feature vectors given the predetermined target values of an ANN. When generated feature vectors are fed to the forward ANN, the target value predicted by ANN will be close to the predetermined target values. Therefore, the OGGN architecture is able to map, inverse function of the function represented by forward ANN. Besides, there is another important contribution of this work. This paper also introduces a new class of functions, defined as constraint functions. The constraint functions enable a neural network to investigate a given local space for a longer period of time. Thus, enabling to find a local optimum of the loss function apart from just being able to find the global optimum. OGGN can also be adapted to solve a system of polynomial equations in many variables. The experiments on synthetic datasets validate the effectiveness of OGGN on various use cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset