On a general structure for hazard-based regression models: an application to population-based cancer research

05/21/2018
by   Francisco J. Rubio, et al.
0

The proportional hazards model represents the most commonly assumed hazard structure when analysing time to event data using regression models. We study a general hazard structure which contains, as particular cases, proportional hazards, accelerated hazards, and accelerated failure time structures, as well as combinations of these. We propose an approach to apply these different hazard structures, based on a flexible parametric distribution (Exponentiated Weibull) for the baseline hazard. This distribution allows us to cover the basic hazard shapes of interest in practice: constant, bathtub, increasing, decreasing, and unimodal. In an extensive simulation study, we evaluate our approach in the context of excess hazard modelling, which is the main quantity of interest in descriptive cancer epidemiology. This study exhibits good inferential properties of the proposed model, as well as good performance when using the Akaike Information Criterion for selecting the hazard structure. An application on lung cancer data illustrates the usefulness of the proposed model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset