On Assessing The Safety of Reinforcement Learning algorithms Using Formal Methods

The increasing adoption of Reinforcement Learning in safety-critical systems domains such as autonomous vehicles, health, and aviation raises the need for ensuring their safety. Existing safety mechanisms such as adversarial training, adversarial detection, and robust learning are not always adapted to all disturbances in which the agent is deployed. Those disturbances include moving adversaries whose behavior can be unpredictable by the agent, and as a matter of fact harmful to its learning. Ensuring the safety of critical systems also requires methods that give formal guarantees on the behaviour of the agent evolving in a perturbed environment. It is therefore necessary to propose new solutions adapted to the learning challenges faced by the agent. In this paper, first we generate adversarial agents that exhibit flaws in the agent's policy by presenting moving adversaries. Secondly, We use reward shaping and a modified Q-learning algorithm as defense mechanisms to improve the agent's policy when facing adversarial perturbations. Finally, probabilistic model checking is employed to evaluate the effectiveness of both mechanisms. We have conducted experiments on a discrete grid world with a single agent facing non-learning and learning adversaries. Our results show a diminution in the number of collisions between the agent and the adversaries. Probabilistic model checking provides lower and upper probabilistic bounds regarding the agent's safety in the adversarial environment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset