On-device Synaptic Memory Consolidation using Fowler-Nordheim Quantum-tunneling

06/27/2022
by   Mustafizur Rahman, et al.
0

Synaptic memory consolidation has been heralded as one of the key mechanisms for supporting continual learning in neuromorphic Artificial Intelligence (AI) systems. Here we report that a Fowler-Nordheim (FN) quantum-tunneling device can implement synaptic memory consolidation similar to what can be achieved by algorithmic consolidation models like the cascade and the elastic weight consolidation (EWC) models. The proposed FN-synapse not only stores the synaptic weight but also stores the synapse's historical usage statistic on the device itself. We also show that the operation of the FN-synapse is near-optimal in terms of the synaptic lifetime and we demonstrate that a network comprising FN-synapses outperforms a comparable EWC network for a small benchmark continual learning task. With an energy footprint of femtojoules per synaptic update, we believe that the proposed FN-synapse provides an ultra-energy-efficient approach for implementing both synaptic memory consolidation and persistent learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro