On matching-adjusted indirect comparison and calibration estimation

07/24/2021
by   Jixian Wang, et al.
0

Indirect comparisons have been increasingly used to compare data from different sources such as clinical trials and observational data in, e.g., a disease registry. To adjust for population differences between data sources, matching-adjusted indirect comparison (MAIC) has been used in several applications including health technology assessment and drug regulatory submissions. In fact, MAIC can be considered as a special case of a range of methods known as calibration estimation in survey sampling. However, to our best knowledge, this connection has not been examined in detail. This paper makes three contributions: 1. We examined this connection by comparing MAIC and a few commonly used calibration estimation methods, including the entropy balancing approach, which is equivalent to MAIC. 2. We considered the standard error (SE) estimation of the MAIC estimators and propose a model-independent SE estimator and examine its performance by simulation. 3. We conducted a simulation to compare these commonly used approaches to evaluate their performance in indirect comparison scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset