On Motion Control and Machine Learning for Robotic Assembly
Industrial robots typically require very structured and predictable working environments, and explicit programming, in order to perform well. Therefore, expensive and time-consuming engineering work is a major obstruction when mediating tasks to robots. This thesis presents methods that decrease the amount of engineering work required for robot programming, and increase the ability of robots to handle unforeseen events. This has two main benefits: Firstly, the programming can be done faster, and secondly, it becomes accessible to users without engineering experience. Even though these methods could be used for various types of robot applications, this thesis is focused on robotic assembly tasks.
READ FULL TEXT