On Stability Condition of Wireless Networked Control Systems under Joint Design of Control Policy and Network Scheduling Policy
In this paper, we study a wireless networked control system (WNCS) with N > 2 sub-systems sharing a common wireless channel. Each sub-system consists of a plant and a controller and the control message must be delivered from the controller to the plant through the shared wireless channel. The wireless channel is unreliable due to interference and fading. As a result, a packet can be successfully delivered in a slot with a certain probability. A network scheduling policy determines how to transmit those control messages generated by such N sub-systems and directly influences the transmission delay of control messages. We first consider the case that all sub-systems have the same sampling period. We characterize the stability condition of such a WNCS under the joint design of the control policy and the network scheduling policy by means of 2^N linear inequalities. We further simplify the stability condition into only one linear inequality for two special cases: the perfect-channel case where the wireless channel can successfully deliver a control message with certainty in each slot, and the symmetric-structure case where all sub-systems have identical system parameters. We then consider the case that different sub-systems can have different sampling periods, where we characterize a sufficient condition for stability.
READ FULL TEXT