On the Complexity of Problems on Tree-structured Graphs

06/23/2022
by   Hans L. Bodlaender, et al.
0

In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in f(k)n^O(1) time and f(k)log n space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by log n, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most f(k)n^O(1) and use f(k)log n space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset