On the Feasibility of Unclonable Encryption, and More

07/14/2022
by   Prabhanjan Ananth, et al.
0

Unclonable encryption, first introduced by Broadbent and Lord (TQC'20), is a one-time encryption scheme with the following security guarantee: any non-local adversary (A, B, C) cannot simultaneously distinguish encryptions of two equal length messages. This notion is termed as unclonable indistinguishability. Prior works focused on achieving a weaker notion of unclonable encryption, where we required that any non-local adversary (A, B, C) cannot simultaneously recover the entire message m. Seemingly innocuous, understanding the feasibility of encryption schemes satisfying unclonable indistinguishability (even for 1-bit messages) has remained elusive. We make progress towards establishing the feasibility of unclonable encryption. - We show that encryption schemes satisfying unclonable indistinguishability exist unconditionally in the quantum random oracle model. - Towards understanding the necessity of oracles, we present a negative result stipulating that a large class of encryption schemes cannot satisfy unclonable indistinguishability. - Finally, we also establish the feasibility of another closely related primitive: copy-protection for single-bit output point functions. Prior works only established the feasibility of copy-protection for multi-bit output point functions or they achieved constant security error for single-bit output point functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset