On the geometric convergence for MALA under verifiable conditions

01/06/2022
by   Alain Durmus, et al.
0

While the Metropolis Adjusted Langevin Algorithm (MALA) is a popular and widely used Markov chain Monte Carlo method, very few papers derive conditions that ensure its convergence. In particular, to the authors' knowledge, assumptions that are both easy to verify and guarantee geometric convergence, are still missing. In this work, we establish V-uniformly geometric convergence for MALA under mild assumptions about the target distribution. Unlike previous work, we only consider tail and smoothness conditions for the potential associated with the target distribution. These conditions are quite common in the MCMC literature and are easy to verify in practice. Finally, we pay special attention to the dependence of the bounds we derive on the step size of the Euler-Maruyama discretization, which corresponds to the proposal Markov kernel of MALA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset