On the Global Solution of Soft k-Means

12/07/2022
by   Feiping Nie, et al.
0

This paper presents an algorithm to solve the Soft k-Means problem globally. Unlike Fuzzy c-Means, Soft k-Means (SkM) has a matrix factorization-type objective and has been shown to have a close relation with the popular probability decomposition-type clustering methods, e.g., Left Stochastic Clustering (LSC). Though some work has been done for solving the Soft k-Means problem, they usually use an alternating minimization scheme or the projected gradient descent method, which cannot guarantee global optimality since the non-convexity of SkM. In this paper, we present a sufficient condition for a feasible solution of Soft k-Means problem to be globally optimal and show the output of the proposed algorithm satisfies it. Moreover, for the Soft k-Means problem, we provide interesting discussions on stability, solutions non-uniqueness, and connection with LSC. Then, a new model, named Minimal Volume Soft k-Means (MVSkM), is proposed to address the solutions non-uniqueness issue. Finally, experimental results support our theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro