On the Limit of Explaining Black-box Temporal Graph Neural Networks

12/02/2022
by   Minh N. Vu, et al.
0

Temporal Graph Neural Network (TGNN) has been receiving a lot of attention recently due to its capability in modeling time-evolving graph-related tasks. Similar to Graph Neural Networks, it is also non-trivial to interpret predictions made by a TGNN due to its black-box nature. A major approach tackling this problems in GNNs is by analyzing the model' responses on some perturbations of the model's inputs, called perturbation-based explanation methods. While these methods are convenient and flexible since they do not need internal access to the model, does this lack of internal access prevent them from revealing some important information of the predictions? Motivated by that question, this work studies the limit of some classes of perturbation-based explanation methods. Particularly, by constructing some specific instances of TGNNs, we show (i) node-perturbation cannot reliably identify the paths carrying out the prediction, (ii) edge-perturbation is not reliable in determining all nodes contributing to the prediction and (iii) perturbing both nodes and edges does not reliably help us identify the graph's components carrying out the temporal aggregation in TGNNs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset