On the optimization of hyperparameters in Gaussian process regression with the help of low-order high-dimensional model representation
When the data are sparse, optimization of hyperparameters of the kernel in Gaussian process regression by the commonly used maximum likelihood estimation (MLE) criterion often leads to overfitting. We show that choosing hyperparameters (in this case, kernel length parameter and regularization parameter) based on a criterion of the completeness of the basis in the corresponding linear regression problem is superior to MLE. We show that this is facilitated by the use of high-dimensional model representation (HDMR) whereby a low-order HDMR representation can provide reliable reference functions and large synthetic test data sets needed for basis parameter optimization even when the original data are few.
READ FULL TEXT