On the Probability of Partial Decoding in Sparse Network Coding
Sparse Network Coding (SNC) has been a promising network coding scheme as an improvement for Random Linear Network Coding (RLNC) in terms of the computational complexity. However, in this literature, there has been no analytical expressions for the probability of decoding a fraction of source messages after transmission of some coded packets. In this work, we looked into the problem of the probability of decoding a fraction of source messages, i.e., partial decoding, in the decoder for a system which uses SNC. We exploited the Principle of Inclusion and Exclusion to derive expressions of partial decoding probability. The presented model predicts the probability of partial decoding with an average deviation of 6 potential for recovering a fraction of the source message, especially in higher sparsity and lower Galois Field size. Moreover, to achieve a better probability of partial decoding throughout transmissions, we define a sparsity tuning scheme that significantly increases the probability of partial decoding. Our results show that this tuning scheme achieves a 16 probability of decoding a fraction of source packets with respect to traditional SNC.
READ FULL TEXT