On the Quality of the Initial Basin in Overspecified Neural Networks

11/13/2015
by   Itay Safran, et al.
0

Deep learning, in the form of artificial neural networks, has achieved remarkable practical success in recent years, for a variety of difficult machine learning applications. However, a theoretical explanation for this remains a major open problem, since training neural networks involves optimizing a highly non-convex objective function, and is known to be computationally hard in the worst case. In this work, we study the geometric structure of the associated non-convex objective function, in the context of ReLU networks and starting from a random initialization of the network parameters. We identify some conditions under which it becomes more favorable to optimization, in the sense of (i) High probability of initializing at a point from which there is a monotonically decreasing path to a global minimum; and (ii) High probability of initializing at a basin (suitably defined) with a small minimal objective value. A common theme in our results is that such properties are more likely to hold for larger ("overspecified") networks, which accords with some recent empirical and theoretical observations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset