On the role of surrogates in the efficient estimation of treatment effects with limited outcome data

03/27/2020
by   Nathan Kallus, et al.
2

We study the problem of estimating treatment effects when the outcome of primary interest (e.g., long-term health status) is only seldom observed but abundant surrogate observations (e.g., short-term health outcomes) are available. To investigate the role of surrogates in this setting, we derive the semiparametric efficiency lower bounds of average treatment effect (ATE) both with and without presence of surrogates, as well as several intermediary settings. These bounds characterize the best-possible precision of ATE estimation in each case, and their difference quantifies the efficiency gains from optimally leveraging the surrogates in terms of key problem characteristics when only limited outcome data are available. We show these results apply in two important regimes: when the number of surrogate observations is comparable to primary-outcome observations and when the former dominates the latter. Importantly, we take a missing-data approach that circumvents strong surrogate conditions which are commonly assumed in previous literature but almost always fail in practice. To show how to leverage the efficiency gains of surrogate observations, we propose ATE estimators and inferential methods based on flexible machine learning methods to estimate nuisance parameters that appear in the influence functions. We show our estimators enjoy efficiency and robustness guarantees under weak conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset