On the Weisfeiler-Leman Dimension of Finite Groups

03/30/2020
by   Jendrik Brachter, et al.
0

In comparison to graphs, combinatorial methods for the isomorphism problem of finite groups are less developed than algebraic ones. To be able to investigate the descriptive complexity of finite groups and the group isomorphism problem, we define the Weisfeiler-Leman algorithm for groups. In fact we define three versions of the algorithm. In contrast to graphs, where the three analogous versions readily agree, for groups the situation is more intricate. For groups, we show that their expressive power is linearly related. We also give descriptions in terms of counting logics and bijective pebble games for each of the versions. In order to construct examples of groups, we devise an isomorphism and non-isomorphism preserving transformation from graphs to groups. Using graphs of high Weisfeiler-Leman dimension, we construct highly similar but non-isomorphic groups with equal Θ(log n)-subgroup-profiles, which nevertheless have Weisfeiler-Leman dimension 3. These groups are nilpotent groups of class 2 and exponent p, they agree in many combinatorial properties such as the combinatorics of their conjugacy classes and have highly similar commuting graphs. The results indicate that the Weisfeiler-Leman algorithm can be more effective in distinguishing groups than in distinguishing graphs based on similar combinatorial constructions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset