Online Active Linear Regression via Thresholding

02/09/2016
by   Carlos Riquelme, et al.
0

We consider the problem of online active learning to collect data for regression modeling. Specifically, we consider a decision maker with a limited experimentation budget who must efficiently learn an underlying linear population model. Our main contribution is a novel threshold-based algorithm for selection of most informative observations; we characterize its performance and fundamental lower bounds. We extend the algorithm and its guarantees to sparse linear regression in high-dimensional settings. Simulations suggest the algorithm is remarkably robust: it provides significant benefits over passive random sampling in real-world datasets that exhibit high nonlinearity and high dimensionality --- significantly reducing both the mean and variance of the squared error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro