Op2Vec: An Opcode Embedding Technique and Dataset Design for End-to-End Detection of Android Malware

04/10/2021
by   Kaleem Nawaz Khan, et al.
0

Android is one of the leading operating systems for smart phones in terms of market share and usage. Unfortunately, it is also an appealing target for attackers to compromise its security through malicious applications. To tackle this issue, domain experts and researchers are trying different techniques to stop such attacks. All the attempts of securing Android platform are somewhat successful. However, existing detection techniques have severe shortcomings, including the cumbersome process of feature engineering. Designing representative features require expert domain knowledge. There is a need for minimizing human experts' intervention by circumventing handcrafted feature engineering. Deep learning could be exploited by extracting deep features automatically. Previous work has shown that operational codes (opcodes) of executables provide key information to be used with deep learning models for detection process of malicious applications. The only challenge is to feed opcodes information to deep learning models. Existing techniques use one-hot encoding to tackle the challenge. However, the one-hot encoding scheme has severe limitations. In this paper, we introduce; (1) a novel technique for opcodes embedding, which we name Op2Vec, (2) based on the learned Op2Vec we have developed a dataset for end-to-end detection of android malware. Introducing the end-to-end Android malware detection technique avoids expert-intensive handcrafted features extraction, and ensures automation. The comparison shows that Op2Vec outperforms the existing one-hot encoding technique for opcode embedding and the developed dataset can provide significant insights for end-to-end detection of Android malware.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset