Opal: Multimodal Image Generation for News Illustration

04/19/2022
by   Vivian Liu, et al.
0

Multimodal AI advancements have presented people with powerful ways to create images from text. Recent work has shown that text-to-image generations are able to represent a broad range of subjects and artistic styles. However, translating text prompts into visual messages is difficult. In this paper, we address this challenge with Opal, a system that produces text-to-image generations for editorial illustration. Given an article text, Opal guides users through a structured search for visual concepts and provides pipelines allowing users to illustrate based on an article's tone, subjects, and intended illustration style. Our evaluation shows that Opal efficiently generates diverse sets of editorial illustrations, graphic assets, and concept ideas. Users with Opal were more efficient at generation and generated over two times more usable results than users without. We conclude on a discussion of how structured and rapid exploration can help users better understand the capabilities of human AI co-creative systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset