Open Source Face Recognition Performance Evaluation Package

01/27/2019
by   Xiang Xu, et al.
10

Biometrics-related research has been accelerated significantly by deep learning technology. However, there are limited open-source resources to help researchers evaluate their deep learning-based biometrics algorithms efficiently, especially for the face recognition tasks. In this work, we design and implement a light-weight, maintainable, scalable, generalizable, and extendable face recognition evaluation toolbox named FaRE that supports both online and offline evaluation to provide feedback to algorithm development and accelerate biometrics-related research. FaRE consists of a set of evaluation metric functions and provides various APIs for commonly-used face recognition datasets including LFW, CFP, UHDB31, and IJB-series datasets, which can be easily extended to include other customized datasets. The package and the pre-trained baseline models will be released for public academic research use after obtaining university approval.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset