Optical Proof of Work
Most cryptocurrencies rely on Proof-of-Work (PoW) "mining" for resistance to Sybil and double-spending attacks, as well as a mechanism for currency issuance. Hashcash PoW has successfully secured the Bitcoin network since its inception, however, as the network has expanded to take on additional value storage and transaction volume, Bitcoin PoW's heavy reliance on electricity has created scalability issues, environmental concerns, and systemic risks. Mining efforts have concentrated in areas with low electricity costs, creating single points of failure. Although PoW security properties rely on imposing a trivially verifiable economic cost on miners, there is no fundamental reason for it to consist primarily of electricity cost. The authors propose a novel PoW algorithm, Optical Proof of Work (oPoW), to eliminate energy as the primary cost of mining. Proposed algorithm imposes economic difficulty on the miners, however, the cost is concentrated in hardware (capital expense-CAPEX) rather than electricity (operating expenses-OPEX). The oPoW scheme involves minimal modifications to Hashcash-like PoW schemes, inheriting safety/security properties from such schemes. Rapid growth and improvement in silicon photonics over the last two decades has led to the commercialization of silicon photonic co-processors (integrated circuits that use photons instead of electrons to perform specialized computing tasks) for low-energy deep learning. oPoW is optimized for this technology such that miners are incentivized to use specialized, energy-efficient photonics for computation. Beyond providing energy savings, oPoW has the potential to improve network scalability, enable decentralized mining outside of low electricity cost areas, and democratize issuance. Due to the CAPEX dominance of mining costs, oPoW hashrate will be significantly less sensitive to underlying coin price declines.
READ FULL TEXT