Optimal Function-on-Scalar Regression over Complex Domains

02/19/2019
by   Matthew Reimherr, et al.
0

In this work we consider the problem of estimating function-on-scalar regression models when the functions are observed over multi-dimensional or manifold domains and with potentially multivariate output. We establish the minimax rates of convergence and present an estimator based on reproducing kernel Hilbert spaces that achieves the minimax rate. To better interpret the derived rates, we extend well-known links between RKHS and Sobolev spaces to the case where the domain is a compact Riemannian manifold. This is accomplished using an interesting connection to Weyl's Law from partial differential equations. We conclude with a numerical study and an application to 3D facial imaging.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset