Optimal Nonparametric Inference via Deep Neural Network

02/05/2019
by   Ruiqi Liu, et al.
0

Deep neural network is a state-of-art method in modern science and technology. Much statistical literature have been devoted to understanding its performance in nonparametric estimation, whereas the results are suboptimal due to a redundant logarithmic sacrifice. In this paper, we show that such log-factors are not necessary. We derive upper bounds for the L^2 minimax risk in nonparametric estimation. Sufficient conditions on network architectures are provided such that the upper bounds become optimal (without log-sacrifice). Our proof relies on an explicitly constructed network estimator based on tensor product B-splines. We also derive asymptotic distributions for the constructed network and a relating hypothesis testing procedure. The testing procedure is further proven as minimax optimal under suitable network architectures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset