Optimal-order convergence of Nesterov acceleration for linear ill-posed problems

01/20/2021
by   Stefan Kindermann, et al.
0

We show that Nesterov acceleration is an optimal-order iterative regularization method for linear ill-posed problems provided that a parameter is chosen accordingly to the smoothness of the solution. This result is proven both for an a priori stopping rule and for the discrepancy principle. The essential tool to obtain this result is a representation of the residual polynomials via Gegenbauer polynomials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro