Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow

06/10/2015
by   T. Tony Cai, et al.
0

This paper considers the noisy sparse phase retrieval problem: recovering a sparse signal x ∈R^p from noisy quadratic measurements y_j = (a_j' x )^2 + ϵ_j, j=1, ..., m, with independent sub-exponential noise ϵ_j. The goals are to understand the effect of the sparsity of x on the estimation precision and to construct a computationally feasible estimator to achieve the optimal rates. Inspired by the Wirtinger Flow [12] proposed for noiseless and non-sparse phase retrieval, a novel thresholded gradient descent algorithm is proposed and it is shown to adaptively achieve the minimax optimal rates of convergence over a wide range of sparsity levels when the a_j's are independent standard Gaussian random vectors, provided that the sample size is sufficiently large compared to the sparsity of x.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset